P Pearson Edexcel

Mark Scheme (Results)

January 2021

Pearson Edexcel IAL Mathematics

Pure Mathematics P3
Paper WMA13 / 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2021
Publications Code WMA13_01_2021_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Pearson Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ or ft will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected. If you are using the annotation facility on ePEN, indicate this action by 'MR' in the body of the script.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation
$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|, \quad$ leading to $x=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $x=\ldots$
2. Formula

Attempt to use correct formula (with values for a, b and c).
3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c, \quad q \neq 0, \quad$ leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^{n} \rightarrow x^{n-1}$)
2. Integration

Power of at least one term increased by 1. ($\left.x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are small mistakes in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme	Marks
$\mathbf{1}$	$\int \frac{x^{2}-5}{2 x^{3}} \mathrm{~d} x=\int A x^{-1}-B x^{-3} \mathrm{~d} x=C \ln x+D x^{-2}(+c)$	M1 dM1
	$=\frac{1}{2} \ln x+\frac{5}{4} x^{-2}+c$	A1
		Total 3

M1: Correct attempt to integrate.
Score for an attempt to divide by the x^{3} term forming a sum of two terms and then integrating.
Award for achieving one term in the correct form. Either $C \ln x+\ldots$ or $\ldots+D x^{-2}$
Note that $C \ln a x$ and versions such as $k \ln 2 x^{3}$ are also acceptable for $C \ln x$ so look at responses involving lns carefully . Ignore spurious notation e.g. $\int C \ln x$ for the M marks as long as integration has been attempted dM1: Achieves both terms in the correct form. Score for $\pm C \ln x \pm D x^{-2}$ or equivalent

Be aware that $C \ln a x \pm D x^{-2}$ and other variations are also correct
A1: $\frac{1}{2} \ln x+\frac{5}{4} x^{-2}+c$ or equivalent simplest form with the $+c$. E.g $\ln \sqrt{x}+\frac{5}{4 x^{2}}+c$
ISW after a correct answer.
Some candidates may incorporate the $+c$ within the \log so $\frac{1}{2} \ln k x+\frac{5}{4} x^{-2}$ where k is an arbitrary constant is ok.
Note that $\frac{1}{2} \ln 2 x+\frac{5}{4} x^{-2}+c$ is not the simplest form and is A0. $\int \frac{1}{2} \ln x+\frac{5}{4} x^{-2}+c$ would also be A0
Attempts via integration by parts can be scored in the same way

$$
\int \frac{x^{2}-5}{2 x^{3}} \mathrm{~d} x=\int\left(x^{2}-5\right) \times \frac{1}{2} x^{-3} \mathrm{~d} x=\left(x^{2}-5\right) \times-\frac{1}{4} x^{-2}-\int 2 x \times-\frac{1}{4} x^{-2} \mathrm{~d} x=\left(x^{2}-5\right) \times-\frac{1}{4} x^{-2}+\frac{1}{2} \ln x+c
$$

M1: For an attempt to integrate by parts the correct way around and achieves $\left(x^{2}-5\right) \times p x^{-2} \pm q \ln a x+c$
If the rule is quoted it must be correct.
It is possible to integrate by parts the other way around but unlikely. It can be scored in a similar way.
dM1: Score for

- either then simplifying to an expression of the form $\pm C \ln x \pm D x^{-2}$ with or without "+ $c^{\prime \prime}$ which could be numerical
- or integrating to a correct but unsimplified answer $\left(x^{2}-5\right) \times-\frac{1}{4} x^{-2}+\frac{1}{2} \ln a x$ with or without " $+c^{\prime \prime}$ A1: $\frac{1}{2} \ln x+\frac{5}{4} x^{-2}+c$ NOT $\frac{1}{2} \ln x+\frac{5}{4} x^{-2}+\frac{1}{4}+c \quad$ (The answer must be in simplest form and with the $+c$)

Question Number	Scheme	Marks
2(i)	(0.5, 6)	B1 B1 B1
		(3)
(ii)	 Shape and position Minimum at $(-3,-1)$ and maximum at $(-1,1)$ Crosses y-axis at $(0,-1)$	B1 B1 B1
		(3)
		Total 6

(i)

B1: Same shape passing through the origin with evidence of a two way stretch.
Minimum must be on the x-axis and the graph must be in quadrants 1 and 3
Evidence is $(3,0) \rightarrow(a, 0)$ where $a \neq 3$ and $(1,2) \rightarrow(b, c)$ where $b \neq 1$ and $c \neq 2$
Condone slips of the pen and mark positively but the curve should neither bend back significantly at either end nor consist of three straight lines
$B 1$: Maximum at $(0.5,6)$. Condone a " \wedge " shape to the curve here.
There must be a sketch for this to be awarded.
The maximum point may be implied by the sight of 0.5 and 6 being marked on the correct axes in the correct position.
$B 1$: Minimum at $(1.5,0)$. Condone $\mathrm{a} " \vee \mathrm{~V}$ shape to the curve here.
There must be a sketch for this to be awarded.
Allow this with 1.5 marked on the x-axis (at the minimum point) and condone marked $(0,1.5)$ on the x-axis
(ii)

B1: Reflection in the y-axis followed by a vertical translation. Look for a $-x^{3}$ shaped crossing the \boldsymbol{y}-axis but not at the origin with turning points to the left of the y-axis. Don't be concerned about the coordinates or relative "heights" of the turning points or the y intercept for this mark.
See conditions for shape in (i).
B1: A minimum at $(-3,-1)$ and a maximum at $(-1,1)$ and at only these points. These may be implied. See part i second B mark. They must be in the correct quadrants and be turnng points, not just points on the curve
B1: Award for a curve crossing the y-axis at $(0,-1)$. May be awarded for a curve stopping at the y-axis at $(0,-1)$ There must be a sketch for this to be awarded.

Allow this with -1 marked on the y-axis and condone marked $(-1,0)$ on the y-axis

Question Number	Scheme	Marks
3(a)	$2 x^{2}-3 x-5=(2 x-5)(x+1)$	B1
	$3-\frac{x-2}{x+1}+\frac{5 x+26}{2 x^{2}-3 x-5}=\frac{3(x+1)(2 x-5)-(x-2)(2 x-5)+5 x+26}{(x+1)(2 x-5)}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
	$=\frac{(4 x+1)(x+1)}{(x+1)(2 x-5)}=\frac{4 x+1}{2 x-5}$	A1
		(4)
(b)	Correct attempt at inverse $y=\frac{4 x+1}{2 x-5} \Rightarrow x=\ldots$	M1
	$\mathrm{f}^{-1}(x)=\frac{5 x+1}{2 x-4}$	A1
		(2)
(c)	$2<x<\frac{17}{3}$	M1 A1
		(2)
		Total 8

(a)

B1: Correct factorisation, can be scored anywhere. Sight of $2 x^{2}-3 x-5=(2 x-5)(x+1)$ Condone $2(x-2.5)(x+1)$
M1: Attempts to combine all three terms using a common denominator. Allow the terms to be separate.
There must be an attempt to adapt the numerators of the first two terms, one of them must be adapted correctly. So allow for example $3-\frac{x-2}{x+1}+\frac{5 x+26}{2 x^{2}-3 x-5}=\frac{3(x+1)(2 x-5)-(x-2) \times 2 x-5+5 x+26}{(x+1)(2 x-5)}$
This may be done in stages but is only scored when all three terms are combined.
Condone a fraction where the denominator $(x+1)\left(2 x^{2}-3 x-5\right)$ is used. (In this case there must be an attempt to adapt the numerators of the all terms and two of the three numerators must be adapted correctly)

$$
3-\frac{x-2}{x+1}+\frac{5 x+26}{2 x^{2}-3 x-5}=\frac{3(x+1)\left(2 x^{2}-3 x-5\right)}{(x+1)\left(2 x^{2}-3 x-5\right)}-\frac{(x-2)\left(2 x^{2}-3 x-5\right)}{(x+1)\left(2 x^{2}-3 x-5\right)}+\frac{(5 x+26)(x+1)}{(x+1)\left(2 x^{2}-3 x-5\right)} * *
$$

A1: Correct fraction with denominator $(x+1)(2 x-5)$ or equivalent such as $2 x^{2}-3 x-5$
Allow this to be given separately
$3-\frac{x-2}{x+1}+\frac{5 x+26}{2 x^{2}-3 x-5}=\frac{3(x+1)(2 x-5)}{(x+1)(2 x-5)}-\frac{(x-2)(2 x-5)}{(x+1)(2 x-5)}+\frac{5 x+26}{(x+1)(2 x-5)}$
If $* *$ was given then they must proceed to $\frac{(x+1)\left(4 x^{2}+5 x+1\right)}{(x+1)\left(2 x^{2}-3 x-5\right)}$
A1: Correct fraction (or correct values). Proceeds to $\frac{4 x+1}{2 x-5}$ via $\frac{(4 x+1)(x+1)}{(x+1)(2 x-5)}$ oe.
(b)

M1: Attempts at the method for finding the inverse.
Score for an attempt to change the subject for their $y=\frac{a x+b}{c x+d}$ or possibly $y=\frac{a}{c} \pm \frac{e}{c x+d}$
Look for a minimum of cross multiplying by $c x+d$ and proceeding to a form $x=\mathrm{g}(y)$
Some candidates may swap x and y first e.g $x=\frac{a y+b}{c y+d}$ and proceed to $y=$.. which is fine (same conditions) Allow this to be scored if one (but not more) of a, b or $d=0$
Allow this to be scored for candidates who don't finish (a) and attempt to change the subject for $y=\frac{a x+b}{c x+d}$
A1: Correct inverse $\mathrm{f}^{-1}(x)=\frac{5 x+1}{2 x-4}$ but condone $y=\frac{5 x+1}{2 x-4}$ and $\mathrm{f}^{-1}=\frac{5 x+1}{2 x-4}$
Allow other equivalents such as $y=\frac{-5 x-1}{4-2 x}, y=\frac{-5 x / 2-1 / 2}{2-x}$ or $y=\frac{5}{2}+\frac{11}{2 x-4}$
(c)

M1: For finding one "end" of the domain. Ignore any inequalities.
This must be numerical.....and you are just looking for the number, not the variable so $y=\ldots$ is OK
Sight of either $\frac{17}{3}$ or their $f(4)$ which may need to be checked or 2 or $\mathrm{f}(x)$ as $x \rightarrow \infty$ that is their $\frac{a}{c}$ (Can be scored for $x \neq 2$)

A1: Correct domain with allowable notation.
Allowable equivalent forms are e.g. $\left(2, \frac{17}{3}\right), x>2$ and $x<\frac{17}{3}$. Condone "or"

| Question
 Number | Sither $x=-\frac{a}{3}$ or $y=a$ | Marks |
| :---: | :---: | :--- | :--- |
| 4(a) | Correct coordinates $\left(-\frac{a}{3}, a\right)$ | B1 |
| (b) | | B1 |

(a)

B1: One of $x=-\frac{a}{3}$ or $y=a$
B1: Both coordinates correct. Allow this to be written separately as $x=-\frac{a}{3}$ and $y=a$
(b)

B1: Correct shape and position in both quadrant 1 and quadrant 2 . Condone an asymmetric graph but the vertex must be on the negative x-axis. Condone a free hand sketch as long as the intention was to have two straight lines. Ignore any "dotted" lines
B1: Correct intercepts given as coordinates or as marked in the scheme. Must be on the correct axes in the correct positions. Condone for example $(5 a, 0)$ for $(0,5 a)$ if marked on the correct axis. Additional intersections is B0 If the graph is only in quadrant 2 this can be scored for meeting the axes at $(-5 a, 0)$ and $(0,5 a)$
(c)

M1: Attempts to solve either of the correct equations. (Ones that don't involve a modulus)
Allow $x+5 a=-3 x$ for $x+5 a=-3 x-a+a$ and $x+5 a=3 x+2 a$ for $x+5 a=3 x+a+a$ Do not condone attempts where a candidate incorrectly combines the modulus terms even if it leads to a correct value for x. E.g. $|3 x+a|-|x+5 a|=-a \Rightarrow|2 x|=3 a \Rightarrow$ scores M0
A1: One correct value for x. Either $x=-\frac{5}{4} a$ or $x=\frac{3}{2} a$ (following a correct non modulus equation)
Allow this mark even if the candidate subsequently rejects the solution
A1: Both values correct $x=-\frac{5}{4} a$ and $x=\frac{3}{2} a$ with no additional values given
This cannot be scored if the candidate rejects either of these solutions
dM1: Correct method to obtain at least one y value using either equation in y.
Evidence would be embedded values leading to $y=$ which may be unsimplified or a correct calculation for their x

A1: Both sets of coordinates $\left(-\frac{5}{4} a, \frac{15}{4} a\right)$ and $\left(\frac{3}{2} a, \frac{13}{2} a\right)$ which may be given $x=\ldots, y=\ldots$ with no extras.
Special case: B1 For either of the two correct coordinates which may be scored with no working or following an attempt that incorrectly combines the modulus terms. Scored 10000

Question Number	Scheme	Marks
5(a)	$18=A-180 \times 1 \Rightarrow A=\ldots$	M1
	$A=198$	A1
		(2)
(b)	$90=198-180 \mathrm{e}^{-5 k} \Rightarrow 180 \mathrm{e}^{-5 k}=108$	M1, A1
	$\mathrm{e}^{-5 k}=\frac{108}{180} \Rightarrow-5 k=\ln 0.6 \Rightarrow k=\ldots$	dM1
	$k=-\frac{1}{5} \ln \frac{3}{5}$ or $k=\frac{1}{5} \ln \frac{5}{3}$	A1
		(4)
(c)	$\theta=198-180 \mathrm{e}^{-9 \times \frac{1}{5} \frac{1}{5} \frac{5}{3}} \Rightarrow \theta=\ldots$	M1
	$\theta=126^{\circ} \mathrm{C}$ (awrt)	A1
		(2)
(d)	$\left\{\frac{\mathrm{d} \theta}{\mathrm{d} t}\right\}=-180\left(-\frac{1}{5} \ln \frac{5}{3}\right) \mathrm{e}^{-\frac{t}{5} \ln \frac{5}{3}}=\ldots$	B1ft
	$\left\{\frac{\mathrm{d} \theta}{\mathrm{d} t}\right\}=-180\left(-\frac{1}{5} \ln \frac{5}{3}\right) \mathrm{e}^{-\frac{9}{5} \ln \frac{5}{3}}=\ldots$	M1
	$=7.33{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$ (awrt)	A 1
		(3)
		Total 11

(a)

M1: Substitutes $\theta=18$ and $t=0$ uses $\mathrm{e}^{0}=1$ and proceeds to find a value for A. Look for $18=A-180 \times 1 \Rightarrow A=\ldots$
A1: $A=198$. Condone $A=198^{\circ} \mathrm{C}$. Sight of 198 is sufficient to award both marks.
(b)

M1: Substitutes $\theta=90$ and $t=5$ with their value for A and proceeds to an equation of the form $P \mathrm{e}^{ \pm 5 k}=Q$
A1: Correct equation $180 \mathrm{e}^{-5 k}=108$ o.e.
dM1: Correct order of operations using ln's to make k the subject. Do not award if taking $\log _{10}$'s. $\left(\log \frac{3}{5}=-0.22\right.$.. $)$ $P \mathrm{e}^{ \pm 5 k}=Q \Rightarrow \pm 5 k=\ln \left(\frac{P}{Q}\right) \Rightarrow k=\ldots$ with $\frac{P}{Q}>0 \quad$ OR $P \mathrm{e}^{ \pm 5 k}=Q \Rightarrow \ln P \pm 5 k=\ln Q \Rightarrow k=\ldots$ with $P, Q>0$
It would be implied by a decimal equivalent to 3 sf. So for correct values accept $k=\operatorname{awrt} 0.102$
A1: Cao. Allow equivalent correct exact answers in the required form. E.g. $k=-0.2 \ln 0.6$ and $k=\frac{1}{5} \ln \frac{180}{108}$
(c)

M1: Substitutes their A and their k with $t=9$ to find a value for θ.
Sight of embedded values is sufficient evidence and condone sign slips which may be common.
A1: Awrt $126^{\circ} \mathrm{C}$ but condone a lack of units. Sight of awrt 126 following $k=$ awrt 0.102 is sufficient to award both marks.
(d)

B1 ft: Correct differentiation. Follow through their k (even as a decimal or as " k "). Allow for $180 \mathrm{ke}^{-k t}$
M1: Substitutes $t=9$ into a function of the form $\left(\frac{\mathrm{d} \theta}{\mathrm{d} t}=\right) \beta \mathrm{e}^{-k t}$ following through on their k. Condone $\frac{\mathrm{d} \theta}{\mathrm{d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x}$
A1: Awrt 7.33 Ignore units.
Award B0 M1 A1 for candidates who achieve \pm awrt 7.33 following a sign error in their $\frac{\mathrm{d} \theta}{\mathrm{d} t}$

Answers without working in (d).
The rubric states that candidates are required to show sufficient working to make their method clear.
They must have a value of k to do this part.
SC: B1ft scored for

- either stating $\frac{\mathrm{d} \theta}{\mathrm{d} t}$ at $t=9$ is You will need check. Allow accuracy to 3 sf and ft on their k
- or following correct k just writing down awrt 7.33

Question Number	Scheme	Marks
6(a)	$\left(\mathrm{f}^{\prime}(x)\right)=\cos \left(\frac{x}{3}\right)-\frac{1}{3} x \sin \left(\frac{x}{3}\right)$	M1 A1
		(2)
(b)	$\mathrm{f}^{\prime}(x)=0 \Rightarrow \cos \left(\frac{x}{3}\right)-\frac{1}{3} x \sin \left(\frac{x}{3}\right)=0 \Rightarrow 1-\frac{1}{3} x \tan \left(\frac{x}{3}\right)=0$	M1
	$\tan \left(\frac{x}{3}\right)=\frac{3}{x} \Rightarrow x=3 \arctan \left(\frac{3}{x}\right) \quad *$	A1*
		(2)
(c)	$x_{2}=3 \arctan \left(\frac{3}{2.5}\right)=\operatorname{awrt} 2.6$	M1
	$x_{2}=$ awrt 2.628 and $x_{6}=$ awrt 2.586	A1
		(2)
(d)	$\begin{aligned} & \mathrm{f}^{\prime}(2.5815)=\cos \left(\frac{2.5815}{3}\right)-\frac{1}{3}(2.5815) \sin \left(\frac{2.5815}{3}\right)=-0.000345 \ldots \\ & \mathrm{f}^{\prime}(2.5805)=\cos \left(\frac{2.5805}{3}\right)-\frac{1}{3}(2.5805) \sin \left(\frac{2.5805}{3}\right)=0.000346 \ldots \end{aligned}$ Chooses a suitable interval and attempts both values	M1
	(Both values correct) Sign change and continuous, therefore root	A1
		(2)
		Total 8

(a)

M1: Attempts the product rule and obtains a derivative of the form $\alpha \cos \left(\frac{x}{3}\right) \pm \beta x \sin \left(\frac{x}{3}\right)$
If the rule is stated or implied to be $v u^{\prime}-u v^{\prime}$ it is M0
A1: $\cos \left(\frac{x}{3}\right)-\frac{1}{3} x \sin \left(\frac{x}{3}\right)$ which may be unsimplified
(b)

M1: Sets their $\mathrm{f}^{\prime}(x)=\alpha \cos \left(\frac{x}{3}\right) \pm \beta x \sin \left(\frac{x}{3}\right)=0$ and proceeds to an equation involving $\tan \left(\frac{x}{3}\right)$
A1*: CSO Proceeds to $x=3 \arctan \left(\frac{3}{x}\right)$ following an intermediate line of $\tan \left(\frac{x}{3}\right)=\frac{3}{x}$ or $\tan \left(\frac{x}{3}\right)=\frac{1}{\left(\frac{x}{3}\right)}$
Do not condone $\tan ^{-1}$ notation unless correct notation is also given.
(c)

M1: Uses a formula of the type $x=\alpha \arctan \left(\beta \times \frac{1}{x}\right)$ with the 2.5 to find the value of x_{2} correct to one dp .
So when $x=3 \arctan \left(\frac{3}{x}\right)$ M1 is scored for $x_{2}=\operatorname{awrt} 2.6$
and when $x=3 \arctan \left(\frac{1}{x}\right)$ M1 is scored for $x_{2}=\operatorname{awrt} 1.1$
A1: $x_{2}=$ awrt 2.628 and $x_{6}=$ awrt 2.586
(d)

M1: Chooses a suitable function for their $\mathrm{f}^{\prime}(x)=0$ and attempts its value at both 2.5815 and 2.5805 .
For the attempt we need to see embedded values as in scheme or one value correct to 1 sf for their $\mathrm{f}^{\prime}(x)$
Allowable functions are $\mathrm{f}^{\prime}(x)=\cos \left(\frac{x}{3}\right)-\frac{1}{3} x \sin \left(\frac{x}{3}\right)$ and multiples of this. See scheme.
Follow through on their $\cos \left(\frac{x}{3}\right)-\frac{1}{3} x \sin \left(\frac{x}{3}\right)$
Allow the function to be stated as just $\mathrm{f}^{\prime}(x)$ (or mistakenly written as $\mathrm{f}(x)$) as long as one of $\mathrm{f}^{\prime}(2.5805)=\ldots$ or $\mathrm{f}^{\prime}(2.5815)=\ldots$ is correct to 1 sf
Other functions are possible, for example $\mathrm{h}(x)=x-3 \arctan \left(\frac{3}{x}\right)$ and multiples of this.
Follow through on their $x-k \arctan \left(\frac{k}{x}\right) \quad$ Unlikely, but it is also acceptable to pick a tighter interval
A1: Requires correct differentiation and

- both values correct (rounded or truncated to 1 sf) Note that $h(2.5815)=0.000786 \ldots, h(2.5805)=-0.000788 \ldots$
- a valid reason that includes both a reference to the sign change and continuity. Condone a mention of continuity of $\mathrm{f}(x)$ instead of $\mathrm{f}^{\prime}(x)$
- a minimal conclusion which could be \checkmark, QED, root.

Question Number	Scheme	Marks
7(a)	Uses $\sin 2 x=2 \sin x \cos x$ AND $\cos 2 x=1-2 \sin ^{2} x$ o.e. in $\frac{\sin 2 x}{\cos x}+\frac{\cos 2 x}{\sin x}$	M1
	$\begin{aligned} & \frac{\sin 2 x}{\cos x}+\frac{\cos 2 x}{\sin x}=\frac{2 \sin x \cos x}{\cos x}+\frac{1-2 \sin ^{2} x}{\sin x} \\ & \quad=\frac{2 \sin x \cos x}{\cos x}+\frac{1}{\sin x}-\frac{2 \sin ^{\not} x}{\sin x}=\frac{1}{\sin x}=\operatorname{cosec} x^{*} \end{aligned}$	$\begin{aligned} & \mathrm{dM} 1 \\ & \mathrm{~A} 1^{*} \\ & \hline \end{aligned}$
		(3)
(b)	Uses part (a) $\Rightarrow 7+\operatorname{cosec} 2 \theta=3 \cot ^{2} 2 \theta$	B1
	Either Uses $\pm 1 \pm \cot ^{2} 2 \theta= \pm \operatorname{cosec}^{2} 2 \theta \rightarrow 3 \mathrm{TQ}$ in $\operatorname{cosec} 2 \theta$ Or alternatively replaces $\operatorname{cosec} 2 \theta$ with $1 / \sin 2 \theta, \cot ^{2} 2 \theta$ with $\cos ^{2} 2 \theta / \sin ^{2} 2 \theta$, multiplies by $\sin ^{2} 2 \theta$ and uses $\pm \cos ^{2} 2 \theta= \pm 1 \pm \sin ^{2} 2 \theta \rightarrow 3 \mathrm{TQ}$ in $\sin 2 \theta$	M1
	$3 \operatorname{cosec}^{2} 2 \theta-\operatorname{cosec} 2 \theta-10=0 \quad$ or $\quad 10 \sin ^{2} 2 \theta+\sin 2 \theta-3=0$	A1
	$\begin{gathered} (3 \operatorname{cosec} 2 \theta+5)(\operatorname{cosec} 2 \theta-2)=0 \quad \text { or } \quad(5 \sin 2 \theta+3)(2 \sin 2 \theta-1)=0 \\ \Rightarrow \operatorname{cosec} 2 \theta=-\frac{5}{3}, 2 \quad \text { or } \quad \Rightarrow \sin 2 \theta=-\frac{3}{5}, \frac{1}{2} \\ \Rightarrow \sin 2 \theta=-\frac{3}{5}, \frac{1}{2} \Rightarrow \theta=\ldots \end{gathered}$	dM1
	$\theta=\frac{\pi}{12}(0.262), \frac{5 \pi}{12}(1.31),-0.322,-1.25 \quad$ (awrt these values)	A1, A1
		(6)
		Total 9

(a)

M1: Uses

- $\sin 2 x=2 \sin x \cos x$
- AND $\cos 2 x=1-2 \sin ^{2} x$ or equivalent. Condone sign slips on the versions of $\cos 2 x$
in an attempt to write $\frac{\sin 2 x}{\cos x}+\frac{\cos 2 x}{\sin x}$ as an expression in $\sin x$ and $\cos x$
dM1: Adopts a valid approach that can be followed and completes the proof.
All necessary steps may not be shown and condone errors such as writing \cos for $\cos x$ or $\sin x^{2}$ for $\sin ^{2} x$
A1*: Correct proof showing all necessary intermediate steps with no errors (seen within the body of the solution) or omissions of any of the steps shown. The LHS starting point does not need to be seen
See main mark scheme and below for examples showing all steps and scoring full marks

$$
\begin{aligned}
\frac{\sin 2 x}{\cos x}+\frac{\cos 2 x}{\sin x} & =\frac{\sin x \sin 2 x+\cos x \cos 2 x}{\sin x \cos x} & \frac{\sin 2 x}{\cos x}+\frac{\cos 2 x}{\sin x} & =\frac{2 \sin x \cos x}{\cos x}+\frac{\cos 2 x}{\sin x} \\
& =\frac{2 \sin ^{2} x \cos x+\cos x\left(1-2 \sin ^{2} x\right)}{\sin x \cos x} & & =\frac{2 \sin ^{2} x+\left(\cos ^{2} x-\sin ^{2} x\right)}{\sin x} \\
& =\frac{\cos x}{\sin x \cos x} & & =\frac{\sin ^{2} x+\cos ^{2} x}{\sin x}=\frac{1}{\sin x} \\
& =\operatorname{cosec} x & & =\operatorname{cosec} x
\end{aligned}
$$

Alt part (a)
M1: For using compound angle formula $\sin x \sin 2 x+\cos x \cos 2 x=\cos (2 x-x)$
dM1: As in the main scheme, it is for adopting a valid approach that can be followed and completing the proof A1: Correct proof showing all necessary steps (See below) with no errors or omissions

$$
\begin{aligned}
\frac{\sin 2 x}{\cos x}+\frac{\cos 2 x}{\sin x} & =\frac{\sin x \sin 2 x+\cos x \cos 2 x}{\sin x \cos x} \\
& =\frac{\cos (2 x-x)}{\sin x \cos x} \\
& =\frac{\cos x}{\sin x \cos x} \\
& =\operatorname{cosec} x
\end{aligned}
$$

(b)

B1: States $7+\operatorname{cosec} 2 \theta=3 \cot ^{2} 2 \theta$ or exact equivalent which may be implied by subsequent work
OR $7+\operatorname{cosec} x=3 \cot ^{2} x$ with $x=2 \theta$
Watch for and do not allow $7+\operatorname{cosec} \boldsymbol{\theta} \boldsymbol{\theta} \boldsymbol{\theta} \cot ^{2}$
M1: Attempts to use part (a) and uses $\pm 1 \pm \cot ^{2} 2 \theta= \pm \operatorname{cosec}^{2} 2 \theta$ to form a 3 TQ in $\operatorname{cosec} 2 \theta$
Condone $3 \cot ^{2} 2 \theta$ being replaced by $3 \times \pm \operatorname{cosec}^{2} 2 \theta \pm 1$ with or without the bracket.
Condone when the " 7 " is missing but these attempts will score a maximum of 2 marks. This mark and dM1 The terms don't need to be collected for this mark.
Alternatively replaces $\operatorname{cosec} 2 \theta$ with $1 / \sin 2 \theta, \cot ^{2} 2 \theta$ with $\cos ^{2} 2 \theta / \sin ^{2} 2 \theta$ within an equation of the form $a+b \operatorname{cosec} 2 \theta=c \cot ^{2} 2 \theta$ multiplies by $\sin ^{2} 2 \theta$ and uses $\pm \cos ^{2} 2 \theta= \pm 1 \pm \sin ^{2} 2 \theta \rightarrow 3 \mathrm{TQ}$ in $\sin 2 \theta$
A1: Correct equation $3 \operatorname{cosec}^{2} 2 \theta-\operatorname{cosec} 2 \theta-10=0$ or $10 \sin ^{2} 2 \theta+\sin 2 \theta-3=0$
The $=0$ may be implied by further work, e.g solution of the equation
Allow this mark even for the correct equation in a different forms. E.g. $3 \operatorname{cosec}^{2} 2 \theta-\operatorname{cosec} 2 \theta=10$
dM1: For a correct attempt to solve their 3TQ $\sin 2 \theta$ or $\operatorname{cosec} 2 \theta$ leading to a value for θ
If they state that $\sin \theta=-\frac{3}{5}, \frac{1}{2}$ and do not proceed to take arcsin and $\div 2$ it is M0
A1: For two of awrt $\theta=\frac{\pi}{12}(0.262), \frac{5 \pi}{12}(1.31),-0.322,-1.25$
A1: For awrt $\theta=\frac{\pi}{12}(0.262), \frac{5 \pi}{12}(1.31),-0.322,-1.25$ with no additional values within the range.
If you see other worthwhile solutions and the scheme cannot be applied, e.g t formula, please send to review
How to mark when other variables are used, e.g. $x=2 \theta$
B1: $7+\operatorname{cosec} x=3 \cot ^{2} x$
M1: Uses $\pm 1 \pm \cot ^{2} x= \pm \operatorname{cosec}^{2} x$ to form 3TQ in $\operatorname{cosec} x \ldots \ldots$. or the equivalent in $\sin x$
A1: Correct equation $3 \operatorname{cosec}^{2} x-\operatorname{cosec} x-10=0$ or $10 \sin ^{2} x+\sin x-3=0$
ddM1: For this to be scored there must be an attempt to halve the values, otherwise M0.
Allow full marks to be scored for a candidate who uses a different variable correctly and reaches 4 correct answers

Question Number	Scheme	Marks
8(a)	States $\log a=0.68$ or $\log b=0.09$	M1
	$a=4.79$ or $b=1.23$	A1
	States $\log a=0.68$ and $\log b=0.09$	M1
	$a=4.79$ and $b=1.23 \quad$ CSO	A1
		(4)
(b)	The percentage of the population with access to the internet at the start of 2005	B1
		(1)
(c)	$P=4.79 \times 1.23^{10}=$ awrt 38	M1, A1
		(2)
		Total 7

(a)

M1: Either states any of $\quad \log a=0.68, \quad a=10^{0.68}, \quad a=$ awrt 4.8
or any of $\log b=0.09, \quad b=10^{0.09}, \quad b=$ awrt 1.2
A1: Achieves either $a=$ awrt 4.79 or $b=$ awrt 1.23
M1: States a correct equation for both a and b. See first M mark
A1: Achieves $a=4.79$ and $b=1.23$ with no incorrect work.
Implied by $P=4.79 \times 1.23^{t}$ with no incorrect work
These are NOT awrt values
Examples of incorrect work are

- $P=a b^{t} \Rightarrow \log P=\log a \times t \log b$
- $\log P=0.68+0.09 t \Rightarrow P=10^{0.68}+10^{0.09 t} \Rightarrow P=4.79 \times 1.23^{t}$
(b)

B1: A correct interpretation. The emboldened words must be present or stated in a similar way
"The percentage of the population with access to the internet at the start of 2005"
A minimal answer is "the percentage with access to the internet in 2005"
Also allow "the initial percentage with internet access".
It is acceptable to state 4.79% of the population had access to the in 2005
(c)

M1: For attempting 4.79×1.23^{10} following through on their 4.79 and 1.23 , (Ignore subsequent work)
Alternatively attempting $\log P=0.68+10 \times 0.09 \Rightarrow P=\ldots$
Condone an attempt at 4.79×1.23^{11}
A1: AWRT 38. ISW after sight of awrt 38 and condone misinterpretations such as stating 38 people.

Question Number	Scheme	Marks
$\mathbf{9 (i)}$	$\int \frac{3 x-2}{3 x^{2}-4 x+5} \mathrm{~d} x=\frac{1}{2} \ln \left(3 x^{2}-4 x+5\right)(+c)$	M1, A1
	(ii)	$\int \frac{\mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}-1\right)^{3}} \mathrm{~d} x=-\frac{1}{4}\left(\mathrm{e}^{2 x}-1\right)^{-2}(+c)$

(i)

M1: Integrates to a form $\alpha \ln \left(3 x^{2}-4 x+5\right)$ where α is a constant. Condone a missing bracket.
Do not accept $\alpha \ln \left(3 x^{2}-4 x+5\right)+\mathrm{f}(x)$, e.g. $\ln \left(3 x^{2}-4 x+5\right)+2 x$
If the substitution $u=3 x^{2}-4 x+5$ is attempted, the mark can be awarded for $k \ln u$
It is unlikely but $\alpha \ln \beta\left(3 x^{2}-4 x+5\right)$ and $\alpha \ln \left(3 x^{2}-4 x+5\right)^{\beta}$ are also correct
A1: $\frac{1}{2} \ln \left(3 x^{2}-4 x+5\right)$ o.e. with or without the $+c$. A bracket or modulus must be present.
ISW after a correct answer.
Do not penalise $\frac{\ln \left(3 x^{2}-4 x+5\right)}{2}$ or $\ln \left(3 x^{2}-4 x+5\right) / 2$ if the intention is clear
Penalise spurious incorrect notation for the A mark only. So do not allow $\frac{\ln \left(3 x^{2}-4 x+5\right)}{2} \mathrm{~d} x$
(ii)

M1: Integrates to a form $\beta\left(\mathrm{e}^{2 x}-1\right)^{-2}$ where β is a constant.
Do not accept $\beta\left(\mathrm{e}^{2 x}-1\right)^{-2}+\mathrm{g}(x)$, e.g. $\beta\left(\mathrm{e}^{2 x}-1\right)^{-2}+\mathrm{e}^{2 x}$
Allow substitutions. So for example,
if the substitution $u=\mathrm{e}^{2 x}-1$ is attempted, the mark can be awarded for $k u^{-2}$
if the substitution $u=\mathrm{e}^{x}$ is attempted, the mark can be awarded for $k\left(u^{2}-1\right)^{-2}$
if the substitution $u=\mathrm{e}^{2 x}$ is attempted, the mark can be awarded for $k(u-1)^{-2}$

A1: $-\frac{1}{4}\left(\mathrm{e}^{2 x}-1\right)^{-2}$ or exact equivalent with or without the $+c$
ISW after a correct answer. Need not be simplified
Penalise spurious incorrect notation for the A mark only. So do not allow $\int-\frac{1}{4}\left(\mathrm{e}^{2 x}-1\right)^{-2}$

Question Number	Scheme	Marks
10(a)	$\frac{\mathrm{d} x}{\mathrm{~d} y}=12 \sec ^{2} 2 y \tan 2 y$	M1, A1
		(2)
(b)	$\frac{\mathrm{d} x}{\mathrm{~d} y}=12\left(\frac{x}{3}\right) \sqrt{\sec ^{2} 2 y-1} \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} y}=12\left(\frac{x}{3}\right) \sqrt{\frac{x}{3}-1}$	M1, A1 ft
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{3}}{4 x \sqrt{x-3}}$	A1
		(3)
(c)	$y=\frac{\pi}{12} \Rightarrow x=4$	B1
	$\frac{\mathrm{d} x}{\mathrm{~d} y}=12 \times \frac{4}{3} \times \frac{1}{\sqrt{3}} \quad \text { or } \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{12\left(\frac{4}{3}\right) \sqrt{\frac{4}{3}-1}}$	M1
	Correct $m_{N}=-\frac{16}{\sqrt{3}}$ o.e	A1
	$y-\frac{\pi}{12}=-\frac{16}{\sqrt{3}}(x-4)$	dM1
	$y=-\frac{16 \sqrt{3}}{3} x+\frac{64 \sqrt{3}}{3}+\frac{\pi}{12}$	A1
		(5)
		Total 10

(a)

M1: Differentiates to a form on the rhs of $\alpha \sec ^{2} 2 y \tan 2 y$ which may be written $\ldots \sec 2 y \times \ldots \sec 2 y \tan 2 y$
Note that the same scheme can also be applied to students who adapt $x=3 \sec ^{2} 2 y$ to $x= \pm 3 \tan ^{2} 2 y \pm 3$
A1: $\frac{\mathrm{d} x}{\mathrm{~d} y}=12 \sec ^{2} 2 y \tan 2 y$. If the lhs is included it must be correct. So $\frac{\mathrm{d} y}{\mathrm{~d} x}=12 \sec ^{2} 2 y \tan 2 y$ is M1 A0
Condone this to be unsimplified $\frac{\mathrm{d} x}{\mathrm{~d} y}=6 \sec 2 y \times 2 \sec 2 y \tan 2 y$ ISW after sight of correct answer
(b)

M1: For an attempt to

- replace $\sec ^{2} 2 y$ with αx
- use the identity $\pm 1 \pm \tan ^{2} 2 y= \pm \sec ^{2} 2 y$ and replaces $\tan 2 y=b \sqrt{ \pm 1 \pm d x}$ to obtain an expression for $\frac{\mathrm{d} x}{\mathrm{~d} y}$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x only.
The expression in part (a) must have had $\frac{\mathrm{d} x}{\mathrm{~d} y}$ as a function of both $\sec 2 y$ and $\tan 2 y$ o.e.
A1ft: Requires a substitution of both $\sec ^{2} 2 y$ with $\frac{x}{3}$ and $\tan 2 y=\sqrt{\frac{x}{3}-1}$ to obtain a correct expression for $\frac{\mathrm{d} x}{\mathrm{~d} y}$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x. Follow through on their $\frac{\mathrm{d} x}{\mathrm{~d} y}=\alpha \sec ^{2} 2 y \tan 2 y$

For a correct $\frac{\mathrm{d} x}{\mathrm{~d} y}$ it is awarded for $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{4 x \sqrt{\frac{1}{3} x-1}}$
A1: Correct answer in the required form.
Allow equivalents e.g. $\frac{3 \sqrt{3}}{12 x \sqrt{x-3}}$. Form required is $\frac{p}{q x \sqrt{x-3}}$ where p is irrational and q is an integer
Alt method for (a) and (b) which can be marked in a similar way

> (a) M1 A1: $x=3(\cos 2 y)^{-2} \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} y}=12(\cos 2 y)^{-3} \sin 2 y$
> (b) If $x=3(\cos 2 y)^{-2} \Rightarrow \cos 2 y=\frac{\sqrt{3}}{\sqrt{x}}$

Score in a similar way to the main scheme
M1 A1: $\frac{\mathrm{d} x}{\mathrm{~d} y}=\frac{12 \sin 2 y}{(\cos 2 y)^{3}}=\frac{12 \sqrt{\frac{x-3}{x}}}{\left(\sqrt{\frac{3}{x}}\right)^{3}}$
Alt (b) via arccos
$y=\frac{1}{2} \arccos \sqrt{\frac{3}{x}} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{2} \frac{1}{\sqrt{1-\left(\sqrt{\frac{3}{x}}\right)^{2}}} \times \frac{\sqrt{3}}{2} x^{-\frac{3}{2}}$
M1: For $\frac{\mathrm{d} y}{\mathrm{~d} x}=\lambda \frac{1}{\sqrt{1-\left(\sqrt{\frac{\alpha}{x}}\right)^{2}}} \times-x^{-\frac{3}{2}}$
A1: Correct and unsimplied A1: Correct and in the required form
(c)

B1: Correct value for x
M1: Attempts to find the value of $\frac{\mathrm{d} x}{\mathrm{~d} y}$ using their part (a) with $y=\frac{\pi}{12}$
the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ from an inverted $\frac{\mathrm{d} x}{\mathrm{~d} y}$ using their part (a) with $y=\frac{\pi}{12}$
or the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ using their part (b) with their value of x found using $y=\frac{\pi}{12}$.
These may be called m or f^{\prime} and not identified as $\frac{\mathrm{d} x}{\mathrm{~d} y}$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}$
A1: Correct normal gradient
dM 1 : Attempt at the equation of normal at $y=\frac{\pi}{12}$.
The gradient should be either an attempt at the value of $-\frac{\mathrm{d} x}{\mathrm{~d} y}$ at $y=\frac{\pi}{12}$ for their $\frac{\mathrm{d} x}{\mathrm{~d} y}$
or an attempt at the negative reciprocal of their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at their "4" which must have been found from $y=\frac{\pi}{12}$
A1: Fully correct equation in the required form. ISW after a correct answer

Allow equivalent exact forms e.g. $y=-\frac{16}{\sqrt{3}} x+\frac{64}{\sqrt{3}}+\frac{\pi}{12}, y=-\frac{16}{\sqrt{3}} x+\frac{256 \sqrt{3}+\pi}{12}$

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

